Waste Water Treatment from the Netherlands, Recent developments in a circular economy

Merle de Kreuk
TU Delft
Circularity and recovery (?

Economic activity → waste → Environmental problems

Mixture of undefined resources

Biological processes
Considerations for recovery - phosphate

Aim for circularity:
Clean natural fertilizer

Or do we just solve a problem?
• Bioplastics
• Alginate like Exopolymers

Water

• Biogas (CH$_4$, CO$_2$)
• Volatile fatty acids
• Biochar
• Fertilizer
• Ammonium
• Phosphate
• Bio-flocculants
• Etc.

Cellulose

Reduction of energy use
Aerobic Granular Sludge Technology

- Bioplastics
- Alginate like Exopolymers

Water

- Reduction of energy use

Cellulose

- Biogas (CH₄, CO₂)
- Volatile fatty acids
- Biochar
- Fertilizer
- Ammonium
- Phosphate
- Bio-flocculants
- Etc.
Compact systems: Enhance settling

Bacterial growth in activated sludge...

...use granules: Aerobic granular sludge!
How to make Granular Activated Sludge?

Operation of Nereda results in stable granulation thanks to

- **Initial uptake of BOD by granules during feeding**
- **Growth on adsorbed / stored BOD during aeration**
- **Sludge blanket surface wasting of excess sludge**
- **Applying selection each cycle to all sludge**
How to make Granular Activated Sludge?

Operation of Nereda results in stable granulation thanks to:

- Initial uptake of BOD by granules during feeding
- Growth on adsorbed / stored BOD during aeration
- Sludge blanket surface wasting of excess sludge
- Applying selection each cycle to all sludge
How to make Granular Activated Sludge?

- Oxygen gradient due to diffusion limitation during aeration (O_2 depleting towards core)
- BOD storage throughout the granule during anaerobic feeding;
- Slow growing organisms are favoured due to lack of BOD during aeration
Typical cycle, NH$_4$ control (WWTP Garmerwolde)
Nereda, full scale since 2012

- Saves space (small footprint);
- Saves building materials (one tank concept);
- Saves energy and produces energy rich waste sludge;
- Produces biopolymers (Kaumera)

...and > 60 build since
Original AB system (CAS) treating 50% of the flow

Nereda system treating 50% of the flow

- 50-60% less energy requirement
- TN < 7 mg/L
- TP < 1 mg/L
75% less area, 30% less energy* en less construcion materials needed for wastewater treatment= cheap and sustainable!

* 12-25 kWh/pe/year vs. Conventional 25-75 kWh/year

Technology invented too late for WWTP Harnaschpolder...

...but maybe not for Hong Kongs Sha Tin WWTP
Water

• Bioplastics
• Alginate like Exopolymers

Reduction of energy use

• Biogas (CH\textsubscript{4}, CO\textsubscript{2})
• Volatile fatty acids
• Biochar
• Fertilizer
• Ammonium
• Phosphate
• Bio-flocculants
• Etc.

Anaerobic Digestion of Waste Sludge

Cellulose
Less sludge = more degradation

• 10-15 L sludge production at 6 g/L per person/day (Appels et al., 2008)
• Sludge consists of:
 Living Bacteria (10-15%)
 Higher organisms
 Carbohydrates (7-17%)
 Proteins (25-62%, mostly around 35%)
 Lipids
 DNA/RNA (1-3.5%)
 Humic matter (15-27%)

(Percentages are weight percentage VSS, From Gonzalez et al, (2018))

Fibres (cellulose, plants)
Cel fractions
Clay and precipitates
Heavy metals
Hair
OMP
Plastic
Considerations for recovery – biogas, VFA

Sludge $\downarrow \Leftrightarrow$ Sludge conversion $\uparrow \Leftrightarrow$ Biogas production per g \uparrow

Conversion $\uparrow \Leftrightarrow$ Dewaterability $\uparrow \Leftrightarrow$ processing costs \downarrow

Enhanced by:
- Pre-treatment of sludge
- Increased mixing
- Different reactor design, e.g. plugflow

Current research focus
Digestion of waste AGS

Waste granular sludge AGS Washed granules
Concluding remarks

- AGS technology reduces energy use, building material, and spaces, while very good effluent quality is reached → even for water reuse

- Primary sludge ends in the flocculated fraction or waste granular sludge, leading to high biogas recovery from WAGS

- SEPS is a biopolymer, that is not easy to degrade, gives structure to the granules….

- ….and can be recovered as a product
It doesn’t matter if a new technology is invented, or research is done to solve a problem. Circularity could benefit!
Thanks to my AGS and AD team

Antonella Piaggio, Sara Toja Ortage, Peng Wei, Lenno van der Berg, Adrian Gonzalez Steef de Valk, Alexander Hendriks, Hongxiao Guo, Javier Pavez
Online courses TU Delft

https://online-learning.tudelft.nl/courses/

Professional education courses:
- Nanofiltration and reverse osmosis in Water treatment
 10th April 2019
- High Rate Anearobic Wastewater Treatment
 15th May 2019
- **Aerobic Granular Sludge Technology**
 January 2020

Free courses:
- Urban sewage treatment
- Drinking water treatment
23-27 June 2019

Delft, The Netherlands

Early bird registration open till 15th of April